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I. Introduction

A. Background

In mathematical combat simulation, it is common to model indirect fire (area)
weapons in two independent steps: First, specific detonation points of the
incoming warheads are selected using Monte Carlo methods. Then, each target
element is located with respect to each warhead detonation point and the
probability of achieving some level(s) of damage are determined, usually from
the separation and orientation of each warhead-target pair. In practical cases,
closed form functions are used to calculate the probability of damage. These
functions are most often in one of two forms: the Carleton-von Neumann
(Carleton) and the Cookie-Cutter (CC) forms. These two functional for=,,-
are shown in Figure1. 1, .

<&. Indirect fire simulations of this type are commonly done in th , especially ,
as an intrinsic part of analyses using the AURA methodology. When attention
was turned toward new, more accurate weaponry, it was seen that the apparent
effectiveness of two otherwise identical weapons might be significantly different
if a Carleton were used for one and a CC for the other. This observation led
to the present study of the Carleton and Cookie Cutter, the formulation of
a hybrid function (the /Klopcic' function) and the development of a user-
friendly, menu-driven c mputer Pode to calculate the effectiveness of artillery
attacks upon collecto sof diffe ent targets.( ' ),-

B. Scope

This report has three sections. The first section presents a comparison of re-
sults from the Carleton and Cookie Cutter functions, including both a math-
ematical proof and a numerical demonstration of their relationships. The sec-
ond section defines and develops the hybrid (Klopcic) function. Finally, the
third section presents some numerical examples of simulations which demon-
strate failures of the Carleton/CC functions and compares the behavior of the
Klopcic function.

1J. Terrence Klopcic, Input Manual for the Army Unit Resiliency Analysis (AURA)
Methodology: 1988 Update, BRL Report BRL-TR-2914, May 1988



1.0000

0.9000

0.8000

E
o 0.7000

0.6000
- Carleton ( 00=1.0

0. 5000

. 0.4000

o 0.3000

o 0.2000

01000- -Carleton ( D0=0.25

0.0000

-50. -40. -30. -20. -10. 0. 10. 20. 30. 40. 50.

1.0000

0.9000

0 0.8000
E
0 0.7000

0.6000

0,5000

0.4000

0 0.3000

o 0.2000

0.1000

0.0000 I

-50. -40. -30. -20. 10. 0. 10. 20. 30. 40. 50.

Miss Distance

Figure 1: The Carleton (above) z nd Cookie Cutter Functions

2



II. Comparison of Carleton and Cookie
Cutter Results

A. Single Aimpoint on Target

The purpose of this section is to prove that using a Cookie Cutter (CC) dis-
tribution to describe the vulnerability of a target to a single weapon will al-
ways produce a higher kill probability estimate than will using any other non-
increasing function (such as the Carleton distribution2 ) if the target is at the
aimpoint and the delivery system is un-biased. Furthermore, the probability
of kill (Pk(K)) for any function, K, will approach that using a CC (Pk(CC)) as
the impact distribution (which reflects the delivery errors) becomes uniform.

Before commencing, it is important to define the concept of lethal area, AL.
Mathematically, the lethal area of a weapon against a target at (u,v) is given
by:

AL= JdAPd(u,v,x,y) (1)

where Pd is the probability of damage of a target at (u,v) due to a weapon at
(x,y).

First, we present the three functions: the Cookie Cutter (CC), any other
non-increasing damage function (K) and an impact distribution function P(r),
which gives the probability of a warhead detonating at point r. Note: for
simplicity in this presentation, we assume that all functions are circularly
symmetrical. Thus, all functions will be written as functions of radius (r) only
and all integrals will be expressed as

I rdr

The three distributions (CC, K, P) have the following properties:

f1: r<R
Cookie Cutter(CC) = 0: r > R

2The Carleton function is defined by:

Pd(u, v, z,y) = Doe D +

where Pd is the probability of damage of a target at (u,v) due to a weapon at (xy).

3



Continuous : all r
Other distribution (K) = Non - increasing: all r

K(r) < 1 :all r

Continuous: all r
Impact distribution(P) = Non - increasing: all r

1 2r f0 K(r) r dr = 1

Finally, since the CC and K distributions describe the same round, they must
be normalized such that their lethal areas (AL) are equal:

AL(CC) = AL(K) (2)

where
AL(CC) = 2rJCC(r)rdr (3)

AL(K) = 2r JK(r) rdr (4)

For future convenience, we here point out that the integrals in equations 2 and
3 can be broken into a sum of integrals over intervals of arbitrary length 6 as
shown in equations 5 and 6.

R r+6

AL(CC) = 2 r ] CC(r) rdr (5)
r0O r

AL(K) = 2r E K(r) rdr (6)
roOI

Note: In equations 5 and 6, the summations are over values of r with step
sizes = 6. Also, in equation 5, we observed that CC(r) = 0 for r > R and

reduced the summation accordingly.

The probability of kill, Pk, for a single round versus a single target, is given

by the probability of impacting at a given radius, P(r), times the probability

of kill from a hit at that radius, (CC(r) or K(r)), integrated over all area.

Pk(CC) = 2 rf P(r) CC(r) r dr (7)

4



Pk(K) = 2 r I P(r) K(r) r dr (8)

The goal of this treatise is attained, therefore, by showing that

Pk(CC) > Pk(K) (9)

The proof takes advantage of the fact that the probability function, P, is
continuous. It is therefore always possible to find a step size 6 such that

P(r) - P(r + 6) < e

for any c. We therefore can divide the integrals in equations 7 and 8 as follows:
R r+6

Pk(CC) = 2 7r E P(r)] CC(r) r dr (10)
r---O r

00 'r+6

Pk(K) = 2rE P(r) K(r)rdr (11)
r=O r

'R r+6 00 r+6

Pk(K)=2rE(r) K(r) rdr+2r E P(r) K(r) rdr (12)
r=O r=R

Notice that the summation in equation 10 stops at R since CC(r) = 0 for
r > R. To stress the difference, equation 11 is broken into two summations in
equation 12.

Now, we cleverly compare terms of equations 10 and 12 by grouping them as
follows. For each term in the summation 0 to R in equation 10, there is a
corresponding term in the first sum in equation 12. However, note that each
such term from 12 is < the corresponding term from 10 because K(r) < 1, and
therefore the integral portion of the 12 term is < the integral portion of the 10
term. Concentrating on the integral portions of the terms, we take from the
SECOND sum in 12 as many terms or fractions of terms as are needed such
that, when added to the FIRST sum integral, the total equals the 10 term
integral. Mathematically,

P(r) CC(r) r dr P(r) j K(r) r dr + P(s) f K(r) r dr

+ P(t) K(r) r dr +.. (13)
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such that

+6 CC(r)rdr= K(r)rdr+]S K(r)rdr+ + K(r)rdr+... (14)

This mapping is shown in Figure 2.

We now note that the left hand side of equation 14 is one of the terms of
equation 5. Thus, in conducting the mapping over all terms from r = 0 to
r = R, the sum of the left-hand terms will equal AL. However, by equation
6, the right hand terms of equation 14 will equal AL if summed over all such
terms. Thus, by equation 1, we conclude that the above mapping exhausts all
terms in equation 12.

Finally, we note that each term in equation 13 is of the form:

P(r) a o P(r) b + P(s) c + P(t) d + ...

where a = b + c + d + ... . However, P(r) is > P(s), P(t), ... , and thus:

P(r) a > P(r) b + P(s) c + P(t) d + ...

Applying this to equation 7, we have:

P(r) j CC(r) r dr > P(r) j K(r) r dr + P(s) K(r) r dr

+ P(t) K(r) rdr +... (15)
,t

If we now sum equation 15 over all terms in the mapping, the left hand side
sums to equation 10 and, since the mapping exhausts all terms, the right-hand
side sums to equation 12. We have therefore proven equation 9, as required.

We now consider the behavior of this relationship at the extrema.

1. As P(r) approaches a constant, the left- and right-hand sides of equation
15 become strictly equal. Therefore, Pk(CC) =. Pk(K). (This can also be

easily seen by substituting P(r) = p into equations 7 and 8 and comparing
with equations 2 and 3.)

6
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2. As P(r) approaches a delta function (at 0, of course, in keeping with
property #2), all terms in equation 15 go to 0 except the first (at r =
0). We then have:

* Pk(CC) =: f~o P(O) rdr= 1.

* Pk(K) =o fo P(O) K(O) r dr = K(O)

Thus, Pk(CC) and Pk(K) converge for inaccurate weapons; however, for ac-
curate weapons, since K(0) is customarily significantly less than 1, Pk(CC)
exceeds Pk(K). (A "rule-of-thumb" often used is to set K(0) = 0.25.)

As a numerical example of the above theorem, a comparison was made, over a
wide range, of the predicted values of Pk for a Cookie Cutter of radius R and
a Carleton-like function of the form:

K(r) = K(O) e-,2/2

A Gaussian probability function was used of the form:

P(r)= 1 2e_-r 2/,l2

Performing the integrals prescribed in equations 7 and 8, we get:

Pk(CC) = 1 - e-
R
2
I
,

and

Pk(K) = S2/(a 2 + S2)

Similarly, equations 2 and 3 yield

AL(CC) = 2r J CC(r) r dr = r R 2

AL(K) = rK(r) rdr = K(o) '2

8



Since R and s are chosen to make AL(CC) = AL(K), we can solve for s in
terms of R and K(0) and substitute into the equation for Pk(K). Forming the
ratio of Pk(CC) / Pk(K) and setting R2 /o 2 = q, we have

Pk(CC) 1- e-9
Pk(K) K+q

A simple computer routine was written to evaluate the above ratio. Results
are listed in Table I for two choices of K(0): 0.25 and 1.

As can be seen, the numerical example obeys the extrema behavior predicted
above: For R 2/a 2 = q --+ 0, the ratio of Pk(CC)/Pk(K) goes to 1. This
corresponds to an inaccurate weapon. On the other hand, for R 2/a 2 = q -+ oo,
(an extremely accurate weapon), the ratio goes to 1 / K(0).

B. Single Aimpoint off Target

If the mean aimpoint of the incoming weapon does not coincide with the loca-
tion of the target, the "non-decreasing" requirement of the impact distribution
no longer holds and thus the proof presented above can not be applied. In fact,
it is obvious that a weapon accurately fired at a point outside of the Cookie
Cutter radius from the target will have no probability of causing damage: In
that situation, the Cookie Cutter will always predict less damage than the
Carleton, whose infinite "tails" always show a non-zero probability of damage.

In this section, the results from a series of numerical studies are reported to
demonstrate the different behavior of the CC and Carleton damage functions
as a function of fixed aiming biases and delivery errors. For this study, the
MCARTEF Code, reported in a following section, was used.

For these studies, three damage functions were chosen. The parameters of the
functions are shown in Table 2.

Note that the lethal area of all damage functions was identical (314.15 M2 ,

corresponding to a Cookie Cutter radius of 10 m.). Since lethal area is com-
monly used as the primary measure of weapon performance, it is appropriate
to treat these damage functions as describing equivalent weapons and thus
compare their results.

9



Table 1: Numerical simulation of Pk(CC) / Pk(K)

q I
1.0E-4 1.001 1.000
3.OE-4 1.001 1.000
1.OE-3 1.003 1.000
3.OE-3 1.011 1.002
1.0E-2 1.035 1.005
3.OE-2 1.109 1.015
1.OE-1 1.332 1.047
0.126 1.413 1.058
0.158 1.511 1.071
0.200 1.630 1.087
0.251 1.772 1.106
0.316 1.942 1.128
0.398 2.139 1.153
0.501 2.363 1.181
0.631 2.613 1.210
0.794 2.882 1.238
1.000 3.161 1.264
1.259 3.433 1.285
1.585 3.682 1.297
1.995 3.889 1.297
2.512 4.041 1.285
3.162 4.134 1.261
3.981 4.172 1.228
5.012 4.172 1.192
6.310 4.151 1.156
7.943 4.124 1.125
1.OE1 4.100 1.100
3.OE1 4.032 1.032
1.0E2 4.010 1.010
3.0E2 4.003 1.003
1.0E3 4.001 1.001
3.0E3 4.000 1.000
1.0E4 4.000 1.000
3.0E4 4.000 1.000
1.OE5 4.000 1.000

10



Table 2: Damage Function Parameters

Type AL Pk(0) or Do
Carleton 314.159 0.25
Carleton 314.159 1.0

Cookie Cutter 314.159 1.0

A series of target points were set up along a line at the following distances
from the origin (x = 0).

z = 0,2,4,7,10,15,20,35,50

At each target point, three targets were placed, one associated with each of
the damage functions. All rounds were aimed at the x=0 point. Thus, analysis
of a study (a Monte Carlo sampling of 5000 rounds) gives a complete set of
results for all three damage functions and for all aimpoint biases given by the
above list.

The study was repeated nine times, each time choosing a different set of de-
livery errors. Since each attack (of the 5000 in each study) consisted only of
one round, there was no difference between mean-point-of-impact (MPI) and
round-to-round errors; we chose to input the errors into MCARTEF as round-
to-round errors. However, note that the errors were input (equally) in both
the range and deflection dimensions. The values chosen for the delivery errors
coincided with thoses chosen for the biases, viz:

x = 0,2,4, 7, 10, 15, 20, 35, 50

The results from the nine studies were then reaggregated, by aimpoint bias,
and plotted versus delivery error. These results are presented in Figures 3
through 11.

It is of general interest to note some of the salient features of the results.
As expected for low biases (proven above for bias = 0), the Cookie Cutter
produces a higher probability of damage than either Carleton.

Once the bias exceeds the Cookie Cutter radius, we see a reversal: the low Do
Carleton has the higher damage probability for low delivery errors. Interest-
ingly, there is a cross-over, even for very large biases: as the delivery error is
increased, the Cookie Cutter (and high Do Carleton) again become the bigger
damage probability functions.

We also notice the expected decrease in damage probability with increasing
bias. (Note the scale change for the higher biases.) Note also the extent

11



0

0
U U.

0

/ Tf) u)

0 k 0

(N L. *

Li

7,,
0

~0

0D Q0 3 r- (C 0C 0 0

CD 0 0 0 0 0 0 0 0 0 0

(di Q0~~ 0 0(g wo c 40 q j dG A V

12



-0

0

000

-D

oN 0

LIC)

0 1/' 0 0 0 ) 0

7, 0 0 0 0 

0q - 00 g 0 0 0 LuoC] o q d GA

0 0 0 0 03



U-,

Ln 0
0N

0

C03

&)) TI

CI,

InI'\

CD 0 0 0 0 0 -I

07, 0 0 0 0 
7, 0 D 0 0 0

CD m co r SLn 14

0 0 0 0 0 0 0D 0 0 0 0

o 0g o 0- 0]1 0 0 0 0 0 0

14



C)f

o C)0

>
*00

00

CNCD

00

0 C 0 0 0 CDC 0

0~~~ ~ ~ 0 0 C

-- 00

dqj ~ ~ 70 g uo j

15a



0

N*0

'-\

0

LL

>
Q)

00

o I,
/ i Q)

0

00

o Co 0 0 0 0 0'00

0 0 0 0 0 0 0 0 0 0 0
0 0 0D 0 0D 0 0 0 0D 0 0D
0D 0) 00 r- (0 ( t N C 0

~-000 0 0 0 0 0 0 0

dG 00 0) g 6WO 40~oC j qojc ',9AV

16



0

CN CD

Lfl

0 s
M) -

LC) I,

Q) u'
> u,

0

LC)

o 0 0 0 0 0 0D 0 0 0D 0a

o o 0D 0 0 0 0D 0 0D 0 0 r

oD 0 0D 0 0D 0 0 0 0 0 0
o CD 00 r- (o UL) rn CD

- 0 0 0 0 0 0 0 0 0 0

(dG 0Qg) 9 FDDCi 0 qo-id A V

17



u)

N~~ 0

0 0 U

Lo f f

o o

m 7,'
v, 7,

o, CN (D 00 00

0 0 D 0 D CD 0 0 D 0
d, 00g )woC

71



0

Ln o no

0/" o I,/'<

\0 03

/; 0

I .

0 
I

-0 0

00
WII

0 m CC) r- (D -) . n No o - 0
o- 0 0 0 0 0 0 0 0 0

0 0 C0 0 0 0 0 0 0 0 0

(dqj 000g) G 5oLu o (] o q o d  A

19



0

IIn

N0 0Q

0

LC)

I) 00 r- ( at r

02



to which the probability of damage increases with increasing delivery error.
In this case, the delivery error serves the same function as the spread in a
multi-round pattern.
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III. The Hybrid (Klopcic) Function

A. Function Definition

The Carleton and Cookie Cutter functions discussed above have certain signif-
icant shortcomings that make each of them disadvantageous for use as damage
functions for conventional area weapons (e.g., fragmenting artillery rounds and
bombs).

The Carleton: Significantly underevaluates kills from direct hits and near
misses - especially when Do (see footnote 2) is set substantially less than
1, which is commonly done for artillery.

The Cookie Cutter: Over-estimates the size of the direct-hit/near-miss area
end ignores the possibility of kills from distant misses.

On the other hand, the functions have certain very good characteristics, viz:

1. Both preserve the lethal area of the warhead being modeled.

2. Both allow for range-deflection asymmetry in the effects.

3. Both are integrable in closed form, allowing easy normalization (to the
lethal area).

4. Both are continuous: the Carleton is continuous in all its derivatives.

The goal of the section is to present a function that relieves the above short-
comings while preserving the good characteristics of the CC and Carleton
functions.

The function so derived, herein referred to as the Klopcic function, is a hybrid
combination of the Cookie Cutter and Carleton functions. Mathematically,
the Klopcic function can be expressed as:

Klopcic Function (KL) = Pko : a-0 AT (16)
VPk e, 2 1  elsewhere

where:

22



Pko, A, B, a,, a. = parameters of the distribution (17)
A a . ( 1 8 )

B OrV

U x - Zo (19)
V = Y- Yo (20)

-+ 1. (21)
A2  B 2

__ X (22)

A cross-sectional plot of the function is shown in Figure 12.

It is shown in Appendix A that the lethal area for the Klopcic function can
be expressed as:

AL(KL)= PkoAB+ A Pko [a + B a r  (23)AL(KL)~~ =VrPo

These factors can be used to simplify parameter input for the Klopcic function.
Referring to Figure 12, we note that a salient feature of the Klopcic function
is the flat-topped core, which extends to ±A in the x direction and to ±B in
the y direction. The damage probability in this region is a constant, denoted
by Pko. The lethal area in this region, ALO, is thus given by

ALo = r A BPko (24)

Another distinguishing feature of the Klopcic function, which does not show
in Figure 12, is the eccentricity of the function in x-y, given by the ratio of A
to B: A

rat = - (25)
B

Note: As specified in equation 18, the eccentricity is common for both the
central flat-top and the surrounding tails.

With these relationships, it is possible to define the parameters for a Klopcic
function in terms that are physically meaningful for the user:

AL: the total lethal area of the weapon against the target, as defined in equa-

tion 23.

23
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rat: A/B, the ratio of x and y extents of the central region.

Pk0 : the probability of damage in the central region.

ALO: the lethal area of the central core.

It is seen that the first three of the input parameters are defined precisely as
they are defined for the traditional Cookie Cutter and Carleton functions. The
fourth parameter, ALO, represents the area of the direct hit/near-miss region
multiplied by the probability of damage in that region. The Klopcic function
therefore provides an intuitively appealing way to include direct hits into a
damage function for a fragmenting munition.

B. Single Aimpoint off Target

In order to get a better appreciation of the behavior of the Klopcic damage
function, the series of numerical studies described in section II.B. were re-
peated, this time comparing the Cookie Cutter, the Carleton with Do = 0.25,
and two examples of the Klopcic function. The two Klopcic functions corre-
sponded to central (direct hit/near miss) radii of 5 and 2 meters. In compari-
son, the Cookie Cutter radius was 10 meters.

As in section II.B., the results (probabilities of damage) are plotted versus
delivery errors for each of the nine fixed aiming biases. These are presented in
Figures 13 through 21. Again, the MCARTEF Code was used.

As anticipated, the results for both of the Klopcic functions lay between the
Cookie Cutter and the Carleton results. For low biases and low delivery errors
(high probability of a direct hit), the Klopcic function results closely approx-
imate the CC results. As delivery errors increase, all results converge toward
a zero asymptote.

The behavior of the results with increasing bias errors is quite interesting. The
CC is only minimally affected by small changes in bias error. However, as the
bias error approaches the CC radius, the CC results plunge precipitously until,
at biases just larger than the CC radius, the cross-over described in section
II.B. takes place. In all cases, the Klopcic function results remain bracketed
by the Carleton and CC results. That is, while the CC values are larger than
the Carleton's, the Klopcic values are smaller than the CC's; however, after

reversal, the Klopcic values are larger than the CC values.
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C. Summary of Characteristics

The hybrid (Klopcic) function has the desired characteristics set forth in the
beginning of this section, viz:

1. It allows a high probability of damage over a specifiable (direct-hit/near-
miss) area.

2. It has long, decreasing "tails" to account for the decreasing, but finite,
probability of fragment damage with increasing miss distance.

3. It preserves the lethal area of the warhead being modeled.

4. It allows for range-deflection asymmetry in the effects.

5. It is integrable in closed form, allowing easy normalization (to the lethal
area).

6. It and its first derivative are continuous.

Unlike the Carleton function, the Klopcic function can not be convoluted in
closed form with a (normal) accuracy function. Thus, the Klopcic will be of
less use in models such as the "Super-Quickie" models, which rely on a closed
form of the equation

PK = dA Pd(u, v,x,y) Ph(x,y) (26)

where Pd is the probability of damage of a target at (u,v) due to a weapon at
(x,y) and Ph is the probability of a weapon functioning at point (x,y). How-
ever, the phenomenal growth and spread of computational power has largely
eradicated the need for "Super-Quickie" models with their potential for sig-
nificant errors that can easily go undetected by the casual user. The run-time
and run-cost of inherently more accurate and error-free models (e.g. the Monte
Carlo Artillery Effectiveness (MCARTEF) model used in this project) are in-
significant considerations.

On the other hand, the Klopcic function provides a simple algorithm for point
estimates of damage. The added computation required above that of a Car-
leton or Cookie Cutter damage function is offset by the ease in input prepa-
ration, since the Klopcic function does not require the user to compromise
between the lethal and the direct-hit areas. For this reason, it is recommended
that this function be incorporated into the more accurate artillery models, as
has been done in the MCARTEF model, described in Appendix B.
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IV. Summary

In this report, the Carleton and Cookie Cutter (CC) damage functions, com-
monly used in artillery effectiveness models, have been studied. A number of
characteristics of the two functions were demonstrated:

o For an aimpoint on a single target:

- A simulation using the CC predicts a higher damage probability
(Pk) than one using the Carleton.

- The difference is maximized as the delivery error decreases.

- The difference disappears as the delivery error increases.

o For aimpoints removed from a single target (bias errors), the relative
effectivenesses of the two functions switches (Carleton effectiveness be-
comes greater than CC). The cross-over point is a complicated function
of bias and delivery errors and the lethal area of the weapon being mod-
eled.

Through a series of numerical studies, certain shortcomings of the two damage
functions were noted. Most important were:

o The Carleton function significantly underevaluates kills from direct hits
and near misses - especially when Do (see footnote 2) is set substantially
less than 1, which is commonly done for artillery.

o The Cookie Cutter over-estimates the size of the direct-hit/near-miss
area and ignores the possibility of kills from distant misses.

To alleviate these shortcomings and produce a damage function that better
resembled the analyst's intuitive knowledge of weapon effectiveness, a hybrid
function (the Klopcic function) was constructed. It was shown that the Klopcic
function retained all the favorable features of the Carleton and CC functions,
with the exception of the Carleton's capability for closed-forni convolution with
a Gaussian function. In addition, the Klopcic function allows direct input of
an extra parameter, a direct-hit/near-miss area. This parameter spares the
analyst the need to compromise global weapon effectiveness features, such as
lethal area, in order to better model an accurate weapon.
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To illustrate the behavior of the Klopcic function, the function was compared
to the Carleton and CC functions in a series of numerical studies. These
studies, like those above, used the new, comprehensive, highly-user-oriented
MCARTEF (Monte Carlo ARTillery EFfectiveness) model.
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Appendix A

Derivation of Lethal Area for the Klopcic
Function
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In the main body of this report, the need was shown for a function that
more closely resembled the actual damage pattern of a fragmenting munition.
In particular, the function must allow for direct hits as well as model the
decreasing, but finite probability of fragment damage versus increasing miss
distance. A hybrid function, herein referred to as the Klopcic function, was
shown to include these features, as well as most of those other features which
make the Carleton and Cookie Cutter damage functions so widely useful. To
be user-friendly, the input set for the Klopcic function was defined in terms of
physically meaningful parameters (rat, Pko and ALo) and the most commonly
used measure of effectiveness, AL. These are defined in Table A-I.

Table A-I: Input parameters for the Klopcic function

AL: the total lethal area of the weapon against the target
rat: A/B, the ratio of x and y extents of the central region
Pko: the probability of damage in the central region
ALO: the lethal area of the central core

The Klopcic function is defined by:

Pk 2 2KlopcicFunction = Pko: + <1. (A-)

Pko e-[ 2/G]+v2/a] : elsewhere

where:

Pko, A, B, a., ay = parameters of the distribution (A-2)
A _ (A-3)

B ay
u = X-Xo (A-4)

V = Y-YO (A-5)

_(A-6)A-- + - = 1.
A2  B2

Xo _ X (A-7)

YO Y

The lethal area (for any function) is defined by:

AL =/J dA Pd(u, v, x, y) (A-8)
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In this appendix, we perform the integration in equation A-8, using the Klopcic
function as Pd. The resulting equation yields the relationships needed to relate
the input parameters defined above to the functional parameters defined in
equations A-1.

We begin by noting that the needed integral breaks into two parts: one inside
and one outside the ellipse specified by

x2  y2

The inner one is just the lethal area of the direct-hit/near-miss zone. Thus,
we need only derive the integral outside of the (AB) ellipse.

A step-by-step solution of the integral is out-of-place in this appendix. Rather,
we present some of the intermediate formulae and the conclusion.

First, eliminating x0 and yo from equation A-1 and rearranging makes the
"x-part" of the exponent equal to

x2  B 2x 2 + A 2y 2 - 2AB,/B 2 x2 + A 2yT + A 2B 2 )

B 2x 2 +Ay 2

with a similar expression for the "y-part". Substitution of

t = Bx/y

significantly reduces the expression. Finally, applying equation A-3 kads to
A -V--m

AL = ALo + Pko- i dtIdye a' (A-10)

where ALO is the lethal area of the direct-hit/near-miss zone. Recall, the double
integral is over the area not represented by At.o.

The integral in equation A-10 can be easily transformed, by a change in coor-
dinate systems, to

i dOL1 r dr e (A-11)

which, in turn, breaks into two standard integrals
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2r wdwe -4- Bx dwe ", (A-12)

Solving, using standard techniques, yields

AL=ALO+ rAPko Bo ] (A-13)

Equation A-13 is the final relationship needed to derive the functional param-
eters - Pko, A, B, a., and a. - from the user input parameters: AL, rat,
Pko and ALO. Solving equation A-13 for a. and listing the other relationships
yields:

_ jr3A2Pk0 - 47r-Pko(AL - ALO)- 7r2APko
or - 2rA Pko (A-14)

a, = rat a. (A-15)

A ,ALorat (A-16)A rPko
A

B =- (A-17)
rat

With these relationships, the Klopcic function is expressed in terms of the
user-friendly, intuitive input parameters listed in Table A-I.

43



This page intentionally left blank

44



Appendix B

The MCARTEF Code
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The Monte Carlo ARTillery EFfectiveness (MCARTEF) computer code is
a menu-driven program for calculating the probabilities of damage for dis-
tributed targets - each with its own damage function - after attack by a set
of correlated warheads, such as in an artillery attack. The code, written in
standard FORTRAN 77, is immediately transportable to any machine having
a FORTRAN compiler in a UNIX environment, and, with little effort, to any
FORTRAN-capable computer.

MCARTEF offers a number of options, such as mixing damage function types
in the same run. Aimpoints can be input or calculated using standard fire di-
rection algorithms. (Currently, only the Fenderkov algorithm is implemented.)
A Monte Carlo technique is used to select actual warhead burst points for each
replication. Results can be accumulated deterministically (by averaging the
damage probabilities) or stochastically (by drawing a random number against
the damage probability).

Four quantities are output. First, the average damage probability is given
and the distribution of damage probabilities are plotted for each target. For
cases involving more than one target, MCARTEF also plots the distribution
of probabilities of damage to at least one target. Finally, for multi-target runs,
the probability of damaging various percentages of the target array are plotted.

It is well beyond the scope of this appendix to attempt to produce a user's
manual for the MCARTEF code here. However, it was felt useful to present a
small demonstration of MCARTEF in order to help the reader determine its
utility to his studies.

In this example, the sample runstream which is included in the MCARTEF
source deck is loaded. The data are reviewed and an aimpoint is added. The
runstream is then executed and the results presented.

It was decided not to print the entire interactive session in the following figures.
Rather, a few representative screens and a sample of the results were deemed
sufficient for the present purposes.
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If you want your screen to pause after every few
lines of output, type "Y"

Do you want some on-screen explanations of the code?

MCARTEF INPUT MENU

TO TYPE

Read (previously Saved file .......... F
Enter interactive input/edit ......... I
To Review Current Data ............... R

To Save Current Data ................. S

To End Input and Begin Calculation Q

To Quit Run Entirely ................. Z

Figure B-1: Opening Screen/Main Menu
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REVIEW CURRENT DATA MENU

TO TYPE

Review Aimpoints .............. A
Review Damage Function~s..............D
Review Delivery Errors ........ E
Review Firing Unit Data.............. F
Graphical Target Layout ........ G
Review Output Options ......... 0
Review Program Controls.............. P
Review Targets ................ T

To End Review . ... .. .. . .. .. . ... .. . .. Q

Figure B-2: Review Data Menu
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Number of Aimpoints - 4

Aimpoints:

x y
-----------------------------

1 -5.00 -5.00
2 0.00 5.00
3 5.00 -5.00
4 5.00 0.00

Errors:

DIST Range Deflection

Target Location normal 40.00 40.00
MPI (Volley Corr.) unifrm 20.00 50.00
Tube-to-Tube unifrm 8.00 8.00
Round-to-Round normal 18.00 12.00

Firing Unit Data:

Number of Firers = 3
Number of Rounds per Firer = 5
Incident angle = 60.00

A

j A

I/
/ Incoming Fire Direction

unit y-axis /
I /

/ anginc1/ \
--------- --------- >

unit x-axis

Figure B-3: Data for Sample Run

50



Number of Damage Functions =4

Damage Functions:

Parameters

type Name AL rat DO/PkO ALO
----------------------------------------------------------------

1 1 Carlti 314.16 3.00 0.25
2 2 Cookiel 314.16 1.00 1.00
3 1 Carlt2 628.32 2.50 0.30
4 3 Klopl 314.16 1.00 1.00 101.50

program Controls:

Number of Replications = 500

Random Number Seeds:
TLE and HPI - 64310
Tube-to-Tube - 4444
Rnd-to-Rnd = 3333

Kills (fully stochastic) = 7398

MODE: Monte Carlo Rounds, Cumulate Damage Probabilities

Number of Targets = 5

Targets:

DAM.
Name Type x y
-----------------------------------------------

1 Truck 1 -20.00 -10.00
2 Truck 1 -15.00 -10.00
3 Tank truck 4 0.00 0.00
4 Big truck 3 10.00 8.00
5 Tent 2 0.00 -15.00

Figure B-4: Data for Sample Run, continued
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NCARTEF INPUT/EDIT MENU

TO TYPE

Input/Edit Aimpoints ............... A
Inpuit/Edit Damage Functions ..... D
Input/Edit Delivery Errors ...... E
Input/Edit Firing Unit Data ...... F
Input/Edit Output Options............ 0
Input/Edit Program Controls ........ P
Input/Edit TARGETS ................. T

To Review Current Data ............ R

To End Input/Edit ................. Q

Figure B-6: Edit Menu
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FIRING UNIT MENU

TO TYPE
---------------------------------------
Input the incident angle .................. A
Input the number of guns/Aimpoints ........ G
Input the number of rounds per gun ........ N
Review current data ....................... R

Quit and return to input menu ............. Q

The Number of Guns is input by inputting an aimpoint
For each gun

AIMPOINT MENU

TO TYPE

Add more aimpoints ................ A
Delete aimpoints .................. D
Generate aimpoints (FENDERKOV) .... F
Review current aimpoints .......... R

Quit and return to input menu ..... Q

Figure B-7: Typical Lower Level Menus (Firing Unit and Aimpoint)
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Damage probability f or TARGET # 1 Truck

Located at -20.00 -10.00

*PK= 0.18*

0.80

0.72

0.64
Probability

0.56

0.48 1

of 0.40 1

0.32 1

0.24 1
Occurrence 1

0.16 1

0.08 j

A*.. A . .A . .A . .A . .A . .A . .A . .A . .A . .A

0 10 20 30 40 50 60 70 80 90 100

Probability of Damage to a Target

Figure B-8: Damage Probability for Target #1
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To repeat graph with lower bins surpressed, type
number of highest bin (9 or less) to be cleared
Else, type C

0.10

0.09 *

0.08 *
Probability *

0.07 *

0.06 *

of 0.05 *

0.04 ***

0.03 ***** *
Occurrence * * *

0.02 ***** *** *
I * ** ** * * ** * ** ** *

0.01 ******************

A A A A A A A A A A A

0 10 20 30 40 50 60 70 80 90 100

Probability of Damage to a Target

Figure B-9: Damage Probability, Rescaled, with Column 1 Removed
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PROBABILITY of SOME TARGET BEING DAMAGED (Assumes independent events)

* *

* PK = 0.45 *

*******

FREQUENCY DISTRIBUTION of DAMAGE to SOME TARGET

0.40

0.36

0.32
Probability *

0.28 *
, *

0.24 * *,* *

of 0.20 * *1* ,

0.16 * *
1* .

0.12 * *
Occurrence * *

0.08 * *

0.04 *** **1* * * * * * * * * * * * *******

A A A A A A A A A A A

0 10 20 30 40 50 60 70 80 90 100

Probability of Damage to a Target

Figure B-10: Probability of Some Damage
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PROBABILITY of DAMAGING AT LEAST N% of TARGETS

1.00 *

0.90 *

0.80 *
Probability *

0.70 *

0.60 *

of 0.50 *

0.40 *****

0.30** *
Occurrence

0.20 *************

0.10 *****************

A A A A A A A A A A A

0 10 20 30 40 50 60 70 80 90 100

(Culmulative) Percent of Tgts Damaged

Figure B-1l: Cumulative Damage Probability Plot
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TABLE of CUMULATIVE DAMAGE

% DMG PROB % DMG PROB

----------------
5 0.448 55 0.184

10 0.448 60 0.184
15 0.448 65 0.088
20 0.448 70 0.088
25 0.274 75 0.088
30 0.274 80 0.088
35 0.274 85 0.040
40 0.274 90 0.040
45 0.184 95 0.040
50 0.184 100 0.040

Figure B-12: Cumulative Damage Probability Table
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